Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Cochrane Database Syst Rev ; 1: CD013334, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1838126

ABSTRACT

BACKGROUND: Debates on effective and safe diets for managing obesity in adults are ongoing. Low-carbohydrate weight-reducing diets (also known as 'low-carb diets') continue to be widely promoted, marketed and commercialised as being more effective for weight loss, and healthier, than 'balanced'-carbohydrate weight-reducing diets. OBJECTIVES: To compare the effects of low-carbohydrate weight-reducing diets to weight-reducing diets with balanced ranges of carbohydrates, in relation to changes in weight and cardiovascular risk, in overweight and obese adults without and with type 2 diabetes mellitus (T2DM). SEARCH METHODS: We searched MEDLINE (PubMed), Embase (Ovid), the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science Core Collection (Clarivate Analytics), ClinicalTrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) up to 25 June 2021, and screened reference lists of included trials and relevant systematic reviews. Language or publication restrictions were not applied. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in adults (18 years+) who were overweight or living with obesity, without or with T2DM, and without or with cardiovascular conditions or risk factors. Trials had to compare low-carbohydrate weight-reducing diets to balanced-carbohydrate (45% to 65% of total energy (TE)) weight-reducing diets, have a weight-reducing phase of 2 weeks or longer and be explicitly implemented for the primary purpose of reducing weight, with or without advice to restrict energy intake.  DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles and abstracts and full-text articles to determine eligibility; and independently extracted data, assessed risk of bias using RoB 2 and assessed the certainty of the evidence using GRADE. We stratified analyses by participants without and with T2DM, and by diets with weight-reducing phases only and those with weight-reducing phases followed by weight-maintenance phases. Primary outcomes were change in body weight (kg) and the number of participants per group with weight loss of at least 5%, assessed at short- (three months to < 12 months) and long-term (≥ 12 months) follow-up. MAIN RESULTS: We included 61 parallel-arm RCTs that randomised 6925 participants to either low-carbohydrate or balanced-carbohydrate weight-reducing diets. All trials were conducted in high-income countries except for one in China. Most participants (n = 5118 randomised) did not have T2DM. Mean baseline weight across trials was 95 kg (range 66 to 132 kg). Participants with T2DM were older (mean 57 years, range 50 to 65) than those without T2DM (mean 45 years, range 22 to 62). Most trials included men and women (42/61; 3/19 men only; 16/19 women only), and people without baseline cardiovascular conditions, risk factors or events (36/61). Mean baseline diastolic blood pressure (DBP) and low-density lipoprotein (LDL) cholesterol across trials were within normal ranges. The longest weight-reducing phase of diets was two years in participants without and with T2DM. Evidence from studies with weight-reducing phases followed by weight-maintenance phases was limited. Most trials investigated low-carbohydrate diets (> 50 g to 150 g per day or < 45% of TE; n = 42), followed by very low (≤ 50 g per day or < 10% of TE; n = 14), and then incremental increases from very low to low (n = 5). The most common diets compared were low-carbohydrate, balanced-fat (20 to 35% of TE) and high-protein (> 20% of TE) treatment diets versus control diets balanced for the three macronutrients (24/61). In most trials (45/61) the energy prescription or approach used to restrict energy intake was similar in both groups. We assessed the overall risk of bias of outcomes across trials as predominantly high, mostly from bias due to missing outcome data. Using GRADE, we assessed the certainty of evidence as moderate to very low across outcomes.  Participants without and with T2DM lost weight when following weight-reducing phases of both diets at the short (range: 12.2 to 0.33 kg) and long term (range: 13.1 to 1.7 kg).  In overweight and obese participants without T2DM: low-carbohydrate weight-reducing diets compared to balanced-carbohydrate weight-reducing diets (weight-reducing phases only) probably result in little to no difference in change in body weight over three to 8.5 months (mean difference (MD) -1.07 kg, (95% confidence interval (CI) -1.55 to -0.59, I2 = 51%, 3286 participants, 37 RCTs, moderate-certainty evidence) and over one to two years (MD -0.93 kg, 95% CI -1.81 to -0.04, I2 = 40%, 1805 participants, 14 RCTs, moderate-certainty evidence); as well as change in DBP and LDL cholesterol over one to two years. The evidence is very uncertain about whether there is a difference in the number of participants per group with weight loss of at least 5% at one year (risk ratio (RR) 1.11, 95% CI 0.94 to 1.31, I2 = 17%, 137 participants, 2 RCTs, very low-certainty evidence).  In overweight and obese participants with T2DM: low-carbohydrate weight-reducing diets compared to balanced-carbohydrate weight-reducing diets (weight-reducing phases only) probably result in little to no difference in change in body weight over three to six months (MD -1.26 kg, 95% CI -2.44 to -0.09, I2 = 47%, 1114 participants, 14 RCTs, moderate-certainty evidence) and over one to two years (MD -0.33 kg, 95% CI -2.13 to 1.46, I2 = 10%, 813 participants, 7 RCTs, moderate-certainty evidence); as well in change in DBP, HbA1c and LDL cholesterol over 1 to 2 years. The evidence is very uncertain about whether there is a difference in the number of participants per group with weight loss of at least 5% at one to two years (RR 0.90, 95% CI 0.68 to 1.20, I2 = 0%, 106 participants, 2 RCTs, very low-certainty evidence).  Evidence on participant-reported adverse effects was limited, and we could not draw any conclusions about these.  AUTHORS' CONCLUSIONS: There is probably little to no difference in weight reduction and changes in cardiovascular risk factors up to two years' follow-up, when overweight and obese participants without and with T2DM are randomised to either low-carbohydrate or balanced-carbohydrate weight-reducing diets.


Subject(s)
Diet, Carbohydrate-Restricted , Energy Intake , Adult , Body Weight , Carbohydrates , Female , Heart Disease Risk Factors , Humans , Male
3.
Cochrane Database Syst Rev ; 2: CD013587, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1098870

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has resulted in substantial mortality. Some specialists proposed chloroquine (CQ) and hydroxychloroquine (HCQ) for treating or preventing the disease. The efficacy and safety of these drugs have been assessed in randomized controlled trials. OBJECTIVES: To evaluate the effects of chloroquine (CQ) or hydroxychloroquine (HCQ) for 1) treating people with COVID-19 on death and time to clearance of the virus; 2) preventing infection in people at risk of SARS-CoV-2 exposure; 3) preventing infection in people exposed to SARS-CoV-2. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Current Controlled Trials (www.controlled-trials.com), and the COVID-19-specific resources www.covid-nma.com and covid-19.cochrane.org, for studies of any publication status and in any language. We performed all searches up to 15 September 2020. We contacted researchers to identify unpublished and ongoing studies. SELECTION CRITERIA: We included randomized controlled trials (RCTs) testing chloroquine or hydroxychloroquine in people with COVID-19, people at risk of COVID-19 exposure, and people exposed to COVID-19. Adverse events (any, serious, and QT-interval prolongation on electrocardiogram) were also extracted. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed eligibility of search results, extracted data from the included studies, and assessed risk of bias using the Cochrane 'Risk of bias' tool. We contacted study authors for clarification and additional data for some studies. We used risk ratios (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes, with 95% confidence intervals (CIs). We performed meta-analysis using a random-effects model for outcomes where pooling of effect estimates was appropriate. MAIN RESULTS: 1. Treatment of COVID-19 disease We included 12 trials involving 8569 participants, all of whom were adults. Studies were from China (4); Brazil, Egypt, Iran, Spain, Taiwan, the UK, and North America (each 1 study); and a global study in 30 countries (1 study). Nine were in hospitalized patients, and three from ambulatory care. Disease severity, prevalence of comorbidities, and use of co-interventions varied substantially between trials. We found potential risks of bias across all domains for several trials. Nine trials compared HCQ with standard care (7779 participants), and one compared HCQ with placebo (491 participants); dosing schedules varied. HCQ makes little or no difference to death due to any cause (RR 1.09, 95% CI 0.99 to 1.19; 8208 participants; 9 trials; high-certainty evidence). A sensitivity analysis using modified intention-to-treat results from three trials did not influence the pooled effect estimate.  HCQ may make little or no difference to the proportion of people having negative PCR for SARS-CoV-2 on respiratory samples at day 14 from enrolment (RR 1.00, 95% CI 0.91 to 1.10; 213 participants; 3 trials; low-certainty evidence). HCQ probably results in little to no difference in progression to mechanical ventilation (RR 1.11, 95% CI 0.91 to 1.37; 4521 participants; 3 trials; moderate-certainty evidence). HCQ probably results in an almost three-fold increased risk of adverse events (RR 2.90, 95% CI 1.49 to 5.64; 1394 participants; 6 trials; moderate-certainty evidence), but may make little or no difference to the risk of serious adverse events (RR 0.82, 95% CI 0.37 to 1.79; 1004 participants; 6 trials; low-certainty evidence). We are very uncertain about the effect of HCQ on time to clinical improvement or risk of prolongation of QT-interval on electrocardiogram (very low-certainty evidence). One trial (22 participants) randomized patients to CQ versus lopinavir/ritonavir, a drug with unknown efficacy against SARS-CoV-2, and did not report any difference for clinical recovery or adverse events. One trial compared HCQ combined with azithromycin against standard care (444 participants). This trial did not detect a difference in death, requirement for mechanical ventilation, length of hospital admission, or serious adverse events. A higher risk of adverse events was reported in the HCQ-and-azithromycin arm; this included QT-interval prolongation, when measured. One trial compared HCQ with febuxostat, another drug with unknown efficacy against SARS-CoV-2 (60 participants). There was no difference detected in risk of hospitalization or change in computed tomography (CT) scan appearance of the lungs; no deaths were reported. 2. Preventing COVID-19 disease in people at risk of exposure to SARS-CoV-2 Ongoing trials are yet to report results for this objective. 3. Preventing COVID-19 disease in people who have been exposed to SARS-CoV-2 One trial (821 participants) compared HCQ with placebo as a prophylactic agent in the USA (around 90% of participants) and Canada. Asymptomatic adults (66% healthcare workers; mean age 40 years; 73% without comorbidity) with a history of exposure to people with confirmed COVID-19 were recruited. We are very uncertain about the effect of HCQ on the primary outcomes, for which few events were reported: 20/821 (2.4%) developed confirmed COVID-19 at 14 days from enrolment, and 2/821 (0.2%) were hospitalized due to COVID-19 (very low-certainty evidence). HCQ probably increases the risk of adverse events compared with placebo (RR 2.39, 95% CI 1.83 to 3.11; 700 participants; 1 trial; moderate-certainty evidence). HCQ may result in little or no difference in serious adverse events (no RR: no participants experienced serious adverse events; low-certainty evidence). One cluster-randomized trial (2525 participants) compared HCQ with standard care for the prevention of COVID-19 in people with a history of exposure to SARS-CoV-2 in Spain. Most participants were working or residing in nursing homes; mean age was 49 years. There was no difference in the risk of symptomatic confirmed COVID-19 or production of antibodies to SARS-CoV-2 between the two study arms. AUTHORS' CONCLUSIONS: HCQ for people infected with COVID-19 has little or no effect on the risk of death and probably no effect on progression to mechanical ventilation. Adverse events are tripled compared to placebo, but very few serious adverse events were found. No further trials of hydroxychloroquine or chloroquine for treatment should be carried out. These results make it less likely that the drug is effective in protecting people from infection, although this is not excluded entirely. It is probably sensible to complete trials examining prevention of infection, and ensure these are carried out to a high standard to provide unambiguous results.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , Chloroquine/therapeutic use , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Adult , Aged , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Bias , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Nucleic Acid Testing/statistics & numerical data , Cause of Death , Chloroquine/adverse effects , Humans , Hydroxychloroquine/adverse effects , Middle Aged , Pandemics , Prognosis , Randomized Controlled Trials as Topic , Respiration, Artificial/statistics & numerical data , Standard of Care , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL